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Abstract: Various approximation procedures of filters by sampling and
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quantization are considered for effective computation. The corresponding

approximation degrees are estimated without the boundedness condition on the

L LT,

modulated signal. ) "
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Qs 1. INTRODUCTION

KX The stochastic filtering theory has been a great source of motivation for ‘
Sg ) research in the field of stochastic processes and there is abundant literature ‘
;g . on the subject, (cf. e.g. [7]. [8]. [10]. [12]. [16]. [23]. [24] and references

" contained therein). One of the main motivation of research has been the

;3 solution of the filtering equation. Since in the linear case the filtering

b:f equation has an explicit solution, the early attempts of approximate

e computations in the nonlinear case were based on the linearization techniques

gg which gave rise to what is called the extended Kalman-Bucy filter; (cf. [8]).

g: The corresponding approximations only aimed at the computation of the 3
A conditional expectation of the state variable at a certain instant in terms of ‘
i; the observations up to a certain time. The computations for the extended E
‘*’ Kalman-Bucy filters are easy (particularly in the discrete-time case), but one i
e inconvenience of the method lies in that the accuracy of the approximation can
{E; not be evaluated. The reference probability';ethod ([1]. [22]. [25]) allowing

*i the derivation of the Zakai equation, has opened a new way to considering the

X filtering problem. Although there is no method for actually solving the Zakai

) equation much has been added to the qualitative study of the filtering process. X
:) On the other hand, the reference probability method has been very useful in )
3 developing approximation procedures ([3]. [11], [13]. [19]. [20]) some of which :
k? are exposed here. A
:E After a short introduction to stochastic filtering. we present the :
‘;? ) approximation procedures based on the periodic sampling of both the observation

r\g ) and the signal. Approximate filters obtained there correspond to the discrete E
:FE time filtering of Markov chains with values in some R3-space and are expressed 1
;: in terms of integrals depending on a continuous parameter, which render the

gg numerical computation difficult. In order to eliminate this difficulty and to ‘
g .
Qr )
i
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help computations we propose a quantization of the signal and the observation o
\
processes. The proposed approximation schemes follow those of [11] and go as :?‘

follows in the decreasing order of difficulty for computations, i) Periodic

sampling of the observation, ii) periodic sampling of the signal, i1ii) Euler ) i:;::
approximation of the signal, iv) quantization of the signal, ' ﬁ%
v) quantization of the observation. For each step the expression of the o
approximate filter is given and the corresponding approximation degree is .
estimated. ‘.:g?

The estimation of the approximation degrees was considered in [3], [11], ;"'
[19] and [20]. but always with the boundedness condition on the modulated .5&
signal h or some restrictive conditions on the likelihood ratio excluding the .’:
linear model from the approximation procedures. The method proposed there does ‘.':'
not necessitate such conditions; it only requires, as in the aforementioned i$¥
references, Lipschitz and linear growth conditions that are necessary for .:.

benefiting from the continuity of the signal process and of its various

approximations.

In order to make our approach as general as possible we choose a model in

LA

which the modulated signal and the drift and diffusion coefficients are time

dependent.

The approximation degrees obtained here are of the order of \/g. as in [3]

PR L R, o

and [11], where 6 is the sampling period but, because of the widening of the

=

* e

conditions, the bounds are better. In [19] and [20], approximation degrees of :-;_: -
l.’:.

the order of 5 were obtained under more regularity conditions on the system and :"_

in a slightly different frame. N
IS

Section 2 is a short presentation of the reference probability method :-:::

o)

without derivation of the Zakai equation, since we only approximate the :::'.._

Kallianpur-Striebel formula. A
N

Section 3 presents the first three approximation schemes and the 5‘;::
e

>

corresponding recursive equations for the filters. :\;‘ \
®
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Section 4 presents the method of estimation of approximation degrees and
gives the bounds for the first and second approximations.
Section 5 considers approximations of the signal by sampling and

quantization.
Section 6 derives the approximation bounds for filters corresponding to
various approximations of the signal and presents a method of quantization of

the observation process preserving the degree of the previous approximations.

2. MODEL AND FILTER

Throughout this work the following usual signal and observation model is
considered.

The signal process is a gq-dimensional continuous Markov diffusion defined
by the stochastic differential equation
(2.1) X, = %o + Jg £(s.x )ds + [g g(s.x)db,
where b, called the state noise, is an r-dimensional Brownian motion,
independent of x.,, and f and g are functions, sufficiently regular in order to
guarantee the existence and uniqueness of the solution, [4]., [6]. The
observation process is a p-dimensional process given by
(2.2) Ye = f; h(s.x )ds + w,
where w, called the observation noise, is a p~dimensional Brownian motion and

h, called the modulated signal. is supposed to satisfy the condition:

(2.3) Efg Ih(s.x)%ds ¢ =

for all t < @, condition under which the filtering equation was derived in [5].

In the general setting of the nonlinear filtering theory [5]. b and w are
correlated in such a way that (b,w) is a square integrable martingale. For
structural reasons that will appear in the sequel, approximation schemes usiag
the reference probability method, as in this work, are all proposed for
independent state and observation noises. We are thus supposing that b and w

are independent.
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(x,.b) whose probability distribution, denoted by Q, remains unchanged. The .:ﬁ

GG,

N

corresponding Radon-Nikodym derivative is given by :}iﬁ
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We denote by |<| the norm in R", by v' the ith component of a vector v and

by m'd the entry (1,j) of a matrix m. |mi.| stands for the norm of the vector
mi' |2 =3 E(mij)z. Ve simply denote by
i

uv the scalar product of two elements u,v e R".

= (mij: j=1.2,...). Ve also write |m

Since a filter is progressively computed in time, we may suppose that the
time parameter of all the processes under consideration ranges over the finite
interval [0,T].

Let G represent any one of the functions f and g. Then G is supposed to
satisfy the following Lipschitz and linear growth conditions.

le(t.x) - G(t*.x")| K0[|t-t'|(1+|XI+IX'|) + |x=x'[]
(2.4)
I6(e.x) | < Ky(1+x|)

for all t,t' € [0.T] and x,x' e R9, where Ko is a positive number not depending
ont,t',x,x".

X5 is supposed to be a square integrable random variable, independent of b
and w.

Let B (resp. Y) denote the space of all R" (resp. Rp)—valued continuous
functions on [0,T] and denote by gT (resp. ;T) its Borel o-field under the
sup—norm topology. Bq denotes the Borel o-field of R%, and B(Rq). the space of
all bounded Borel functions on R3.

P is the probability measure on Eq x ET X zT =: £ induced by (x..b.y).

We suppose that all the probability spaces are complete. We put Q2 = RY x B x
Y. Therefore, (Q'ET’P) is the probability space on which all the random
processes under consideration are defined. We denote by gt (resp. 1t) the
sub-o-fields generated by {(x .bs.ys); s ¢ t} (resp. {ys; s { t}.

According to the Girsanov theorem [14]. there is a probability measure PO

n ET' equivalent to P, under which y is a Brownian motion independent of

R NN
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dP T _ 1T 2 _ W'

(2.5) I - exp[J C,dv, - 5 IC|“ds]. with C_ = h(s.x). 'Jt
st

( 1

The probability law of y under P, is denoted by Pg E(resp. E,., EQ. Eg) "

. represents the expectation under P (resp. P,.Q. Pg). )
We put :{: :

) (2.6) Z. = exp[SE Cdy - L% Ic |2as] il

’ t = FPUg MY T T 1% )

The process Z = (Zt: t € [0,T]} is a martingale with respect to F = {Et: f:
.

t e [0,T]} and P,, and il

Z, = Ey(ZlE) = g— a.s. S

0.t Rtk

where Pt (resp. PO t) stands for the restriction to Et of P (resp. Po). l:
If U is an Et-measurable integrable random variable, then .!,:

E.(Z. U|Y.) i

_ 0'"t =t - Q B

(2.7) E(Ul;t) = E,Z,T) and EO(UIIt) = EY(U) o
t'=t e

The second formula is a consequence of the independence of b and w. |:
R. 3

A finite conditional measure o, can be defined on RY, such that, for all F

e B(RY) i
_ @ ) =

(2.8) o (F) = E[Z,F(x,)] = Eo[th(xt)lzt]. e
U™ g
The measure-valued process o is called the unnormalized filter (or filtering {'-':-
process) whereas the process 7 defined by the Kallianpur-Striebel formula [9]: i'.
L2l

= o

(2.9) LA (F) = at(F)/at(l) ::(
is called the (normalized) filter or filtering process. “f:‘f
 J
For a detailed presentation of the reference probability method we refer “

~ .\.'
to [1] and [22]. We just mention here the fact that an application of the Ito .:
. differentiation rule to (2.8) to (2.9) successively leads to the Zakai equation a&
[25] and to the nonlinear filtering equation, obtained in [5] by an application ;::-;
-‘.}

of the martingale representation theorem. In this paper we do not deal with ::L
o

these equations. The approximations we consider here concern formulas (2.8) "‘;

and (2.9).
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3. APPROXIMATIONS BY PERIODIC SAMPLING
3.1 FIRST APPROXIMATION

We suppose that the observation process y is sampled with a constant
period of length 6§ and y is known by its samples Yo = 0, YRR APIREY with
$ [T/6]. ([asb] denotes the integer part of a/b). For a function F on [0,T]
write FO = F(n6) - F((n-1)5) with Fo = F. We put N = [1/5] and y° = 2

n=0.1,...,N}. Under Po. {yg'i; i=1,...,p: n=1,...,N} is a set of

v et _pat gai

n

we

independent Gaussian random variables with means O and variances 6. We denote

by lz the sub-o-field of It generated by (yg; n  [t/6]}. The filtering
process 16 with respect to the sampled observation {yna; n=0,....N} is given
(3.1) 7O(F) = E[F(x,)|¥2]. for F e B(RY).

As in (1.9) we have

(3.2) (F) = C(F)1e(1).  for F e p(rY
where
(3.3) o%(F) = EyfZ,F(x,) 0] = EY[o,(F) [?].

where 05 is the unnormalized filtering process corresponding to the sampled

observation.

For F e B(Rq) we have

(3.4) O (F) = EYF(x.)z°]

t t’t
where

5 (/8] 55 &5 .62
(3.5) Z,=exp I (Hy - §-|Hn| )

n=0
with
65 1 b 5 _

(3.6) H) = 5 STo1)s Bls:x s Hg = 0.

For a quick proof of these formulas, derived in [11], it is enough to
notice that Zi is the ratio of the probability densities of {yg; n § [t/6]}

under P and P,, given x.

A recursive computation of 06 can be derived from (3.4) as shown in the

following
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THEOREM 3.1
Let us put
66 & 1,602
(3.7) z . =exp(Hly -3 [H [

. q
and define the conditional kernel Lné(x(n-l)a' ) on R* by

(3.8) Lné(x(n—l)b'F) = quF(u)LnG(x(n-l)b'du)
= EQ[znGF(xné)lx(n—l)G]

for all F e B(Rq). Then aga; n=1,...,N satisfies the following recurrence

equation:

(3.9) 2 (F) = quLnG(u.F)a?n_l)a(du)

= &(n-1)ollns - F)]

for all F e B(RY); 1i.e.

5
(n-1)stlns( " ).

where ag coincides with the law of Xg-:

o
ané(dx) =9

For (n~1)6 < t < né, ai is given by

5

(wFo1)s

(3.10) af(p) = (du)

IPASIER

5
9n-1)6LP (n-1)5, ¢+ F)I

for all F ¢ B(Rq), where Ps , 8§ <t, is the conditional probability kernel of

t

X, given X - This formula can also be written as

5 5
o (dx) = o 1)6lP(n-1)5, (" 9X) -]

Proof: For t = nd, formula (3.4) gives
5 _ Q0
ané(F) =E [Z(n—l)b Zns F(xnb)]

Q.6 Q
=EAZ(n1)s E [znbp(xnﬁ)lx(n‘l)aj)

Q,.5
= ENZ 1)6Mme X (n-1)5'F)}

This is formula (3.9). For (n-1)5 < t < nb. 2 = Z?n—l)&' Then (3.10) is

obtained by

R R A N i N R N P P N T T e e e N A e e
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0
(F) = Bz, Fix)] i
t (n-1)6 t '.:o*
= £z° EYF(x) |x 1) 0 e
(n-1)6 t’ " (n~-1)8""" DA
5 ®
Formula (3.9) allows the recursive determination of o at the sampling k’ﬁ
o
points and formula (3.10) gives it at any other point. The greatest difficulty et
2y
ML
in the computation of aﬁa. n=1,...,N, by (3.9), lies in the fact that the 5
computation of the kernel Lms necessitates the complete knowledge of the »::
e
probability law of x. This is very unrealistic, because there are few ::“'
Ny
nonlinear diffusion processes whose laws can be handled. We therefore simplify 2]
5 J
the work by reducing the problem to the knowledge of the transition ,
probabilities of x. El\ﬁ
i.::
Y
3.2 SECOND APPROXIMATION ®
N
'u'::\
We approximate Hg by '.t:C'
™ e
6 1 .né A
(3.11) H =3 ‘r?n-l)éh(s'x(n-l)ﬁ)ds 52&
Then Z 5 depends only on x(n—l)b' Let us denote it by Z 5 The kernel Lné :-_’::
o,
becomes :::
\
~ ~ '\*
= <
(3.12) Lns((n-1)6'F) = 206 P(n-1)5.06%(n-1)5'F) | e
for F e B(qu). We denote by 06 the unnormalized filter given by formulas (3.9) Y
A
~ ~ \"-
and (3.10), after Lnb is replaced by Ln&' and by 1r‘s the corresponding :{.E
.\'I
normalized filter. v
@
A
3.3 THIRD APPROXIMATION e
\f\'
NN
b
Except for trivial cases the computation of the transition probabilities N
Ps ¢ of a diffusion process is not an easy task and needs approximation E,}'
* e
procedures. One of the elementary approximation procedures lies in the Euler ":"
PN
approximation of x defined by XA
~ ~ ~ A~ 6 ‘
(3.13) X 5 = x(n—l)& + f[(n—l)é.x(n_l)6]6 + g[(n—l)Z’i.x(n__l)as]bn ::
with Xy = Xqg- The estimation of the approximation degree will be given in :::j;\
. oo
ection 5. 2]
. J
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It is seen that {xnaz n=0,1,...,N} is a Markov chain and its transition

probabilities can be formulated in terms of the distributions of bné;
n=1,2,...,N.

We approximate x by

~ NA
(3.14) X, =3 x .1 (t).
t =0 né [né, (n+1)6[
We then replace x by x in formulas (3.4) to (3.9) and obtain by (3.9) the
corresponding unnormalized filter 026' n=0,1,...,N. We put af = 026 for ndb < t

A~

< (n+1)6. 06 is an approximation of o. We denote by wﬁ the normalization of
~5
o .

In Section 5 we shall consider another approximation where X 5 will be
replaced by a finite space valued random variable. Before going further into
the approximation procedures, we are going to develop, in the next Section, the
general method of estimation of approximation degrees and apply it to the first

and second approximations which have their own theoretical interest.
4. ESTIMATION OF APPROXIMATION DEGREES.

Suppose % represents any approximation of » corresponding to a periodic
sampling of y with period 6. We are interested in the asymptotic behavior of
;(F). for F e 3(mq); more precisely, in proving the Ll—convergence of %(F) to
7(F) and estimating the speed of convergence as 6 =+ O.

The LP-norm under P (resp. Py) 1s denoted by ||'||p (resp. ||~||0'p). For
an R"-valued random variable U, the norm HUHp is defined by ||U||g =

E(C 3 (U)2P'2).
i=1

In all the approximation schemes considered here, Cs = h(s.xs). s<t, is
approximated by a left continuous step process which is constant on sampling
intervals. We denote by &t s the process coinciding with this approximating

step process on [0,[t/6]6] and vanishing outside of this interval. We put

& -0 for t<56. Notice that &r .= &

t s for s { [t/6]6. The corresponding
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likelihood ratio formula can then be written as follows:

t 1.t 2

(4.1) Qt = exp(fb 8t.sdys - §Jo|8t,s| ds).

For the first (resp. second) approximation. we have

(/] 70
(4.2) &t.s = H (resp. H)) for (n-1)6 <'s < nb ¢ t.
and put
) ~5 .

(4.3) Ct.s (resp. Ct,s) t= Et.s.

In some other approximation schemes, as in the third approximation, x is
replaced by another process X approximating it. Particular notations
corresponding to these schemes will be introduced when we shall be considering
them.

In the case where the likelihood ratio Z is approximated by 2. the filters
o and 7 are approximated by 3 and %. respectively, defined by
(4.4) 5 (F) = EYZ F(%,)] and 7 (F) = 5, (F)/5,(1)
for F e B(Rq).

At the first step we are going to derive a bound for ||w(F) - %(F)II1
under the hypothesis that

(C,: t e [0.T]} and (8% .: te[0.T]} belong to
(4.5)
1%([0.T] x 0, T ® F,. dt x dP)

where T is the Borel o-field of [0,T].

For this purpose the following Girsanov theorem constitutes a useful tool.

We write it as a lemma.
LEMMA 4.1

Under the probability ﬁ. defined by ab = ZTdPO’ the process
o t
(4.6) W =Y, " IO &T.sds
is a Brownian motion independent of (xo.b) and the law of (xo.b) is always Q.D

The mathematical expectation under ﬂ is denoted by ﬁ_ We choose F e B(Rq)

once and for all and write

--------------------------------------
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Qr§ )
Q . Q B2 P14 "D
EXZ)[x(F) - =(F)] = E*[Z F(x,] - —4 EY(Z) = )

t t 23 t ~
2, 7

Q ° ®

E(2F(x,)] .
= Bz Fix,) - L RG] - —g——E%z, - E%E)0. g
E'Z,) 8
Therefore, 1':
N

o ° o Q

We remark that ?r is a regular conditional probability measure and that ,‘:'
¢
I%(F)l < |IF|]. for almost all trajectories of y, where |IF|] denotes the E'
sup-norm of F. Thus .
e,
o 1
(4.8) IFEEZ ) (o, < HIFH Nz 01, o
On the other hand, we can write ‘j

o o

° |
< HELz -2 Fx )1y 4 + 1IEA2, (Fix) - PN, ot
o ey
<z, - ZoFx) g | + HEIF(x) - Fixg 4 2
o arqy

S HFIL Mz 2,01, | + BIF(x) - Fx ) = R,

o W
HFIL Nz 1o | + 1IFGx) - Fx, 3
)
where we used the statement of Lemma 4.1. !
£
From inequalities (4.7), (4.8) and (4.9) we finally deduce the following J:

(] ] “
(4.10)  |lr (F) - 7 (O], < 21IFI] Nz -2, 115 ; + HIFGx)-Fx 11 >
-

Next, we derive a bound for ”Zt-QtHO.l' E:

By using the inequality lex-eyl < |x—y|(ex+ey). Vx.y € R, L ]
Pty
we can write ::_:
.

' (4.11) lz,-2,] < (z+2)u,| = z Iu,] + Zu,| R
where ‘u
D

t 1.t 2 2 >

(4.12) U, = Jg (6,8, Jdy, - shollc 1= 18, [1%)ds. :l'?.
We have, by (2.2) o
ey

(4.13) Eo(Z IU. ) = E(lU ) =
t 1.t 2 W

= E(Jfg(c L, aw, + 3fglc €, %as) e

t 2, . 1/2 . 1.t 2 o~
S Ugele 8, [1%as)™ % + 510 Elc, 8, |%s R
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According to Lemma 2.1 we can write

(4.19) B2 Ju 11 < B2 1S(c 8, ey D) + FEENIC, P-18, [Plas

For the evaluation of the first term of the right hand side, we remark

that, for fixed x and §. 2t is measurable with respect to Yi. We can therefore

write
(4.15) Eo(2, 15g(c L, ey, D) =
&
EoL2 B (I5g(c, 2, o, [1Y,)] <

< EgtZ IEE(I5g(c, 8, Dy, I? I¥ %1%

For fixed x and §. the stochastic integral of this formula is a centered
Gaussian random variable and we need to calculate its conditional second moment
with respect to a o-field generated by a finite number of centered Gaussian
random variables. Therefore the conditional expectation of the stochastic

integral term is equal to its projection onto the Gaussian space generated by

y?.....yga. with n=[t/6]. It is easily seen that

ELIGC, 2, Jav 1Y) = 5§(e] | - & a,.

t.s S

Since (always for fixed x and §)

6

-8 §)aYg o(C - CL gy

]
O(Ct.s
is independent of Yi. we see that the conditional variance of fé(Cs - Ct s)dyS

IS(Cs—&t.s)dys -

is I;]Cs -~ Ci'slzds. Consequently, we have
Y.t _ 2,6, _
(4.16) B (Iigc, - €, v | Yo =
t, 0 2 t 5 2
= [IO(Ct.s - 8t.s)dys] * IOICs - ct.sI ds.

By using again Lemma 4.1, from (4.15) and (4.16) we derive:
t
(4.17) Ep(2, 115(CeE, v D <
< BIrg(cd | - & ay |+ E(Sle, - € [Pas)!?

By Lemma 4.1 again, we have
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t, 0

(4.18) Blrgicy &, vl <

$ ﬁ“‘é(ci's - (o:t.s)&t.sdsl * gu(t)(cg's - &t.s)dasl

CoIsi 6, b, oo+ tplch -8, Pat

According to (4.16), (4.17) and (4.18), inequality (4.14) gives:

(4.19) o2, 1u,11 <

< Elfé(Ci's - 8t.s)&t.sds| + (féglci.s_ﬁt'sl2ds)1/2 .
5 12,172 1.t 2 2
A 5 Rl 0 o § O e (R T2
Inequalities (4.13) and (4.19) provide a bound for (4.11).

+ E(félcs -cC

Let us denote by |°|t the norm in L2([0.t] x 1) where the measure is
dtxdP. Then we can express the main tool which will allow the evaluation of

the approximation degrees for filters.

MAIN LEMMA 4.2

Under Hypothesis (4.5), the following inequality holds.
(4.20) iz, - 2 11y, <
1 1
< IC'C?'t + lc_ﬁt't(l‘ﬂc_&t|t + éc M &t' t) +

3 SR NSRS [X Y o

Now, we are able to express, in terms of 6, a bound for (4.10), under the

following hypothesis.

In(e.x) = h(e".x")| < KLle-t" [(1+]x]+]x" [)+]x-x"]]
(4.21)
In(e.x)| < Ky(1 + Ix}).

where Ko is a positive number not depending on t, t', x and x'. We could
choose K0 different from the one used in (2.4) for f and g. But this would
render the notations more complicated.

We first recall the following classical result, (cf. Section 5).

There exist positive constants K1 and K2 such that

172
(4.22) lx, Iy < K, and  [lx —x_[], < Kylt-s]""7.

These inequalities are only consequences of the square integrability of Xg
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and of conditions (2.4) for f and g.

In this section we only consider the two cases of the first and second
approximations. In these two cases X = X. Inequalities (4.21) and (4.22)

guarantee that Hypothesis (4.5) is fulfilled. Therefore, we can apply Lemma

4.2.
For ¥ = wa. (4.10) and (4.20) give
é
(4.23) |l (F) = 22(P) I, <
1 1
< 2F | 1ccq, (2 + JocA, + Joc )
By putting t'=[t/6]6, we can write
t 5 |2
foalcs - ct'sl ds =
t 2 t' 5 12
=J E|Cs| ds + Jg Elcs-ct'sl ds ¢
2 . b 2
< 6 sup ||C5||2 + t' sup Ilcs-ct.s||2'
s st
(4.21) and (4.22) give, for (n-1)6 < s { né < ¢,
6 1. né ,
(4.29) 16,2 115 ¢ 1lh(s.xy) = 32 n(uxyaul I, =

= 511032 slh(s.x,)-h(u.x ) Jdul I, €
< KolgTosgyoBL lums (1 Ix, I+ I 1) + I, | 1Pau)' 2

< Ky [6(1+2K) + K2J3].
As lICs||2 < Ko(1+K1). we can write

(4.25) 1cCA, < Ky(1+K, + VT [K, + (142K, )VBIWVG =: A Vb.
We also have IICf s||2 (4 K0(1+K1). Therefore, we can formulate the

following result.
THEOREM 4.3

Under hypotheses (2.4). (4.21) and X € L2(Q.FT.P) we have

(4.26) [{w (F) - »2(F)([, < 2I[F|IA° V5

where

(4.27) AS - A1[2+%A1\/E + VT Ky (14K,)]

with Al defined by (4.25). o
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REMARK 4.4 ]
Inequality (4.26) holds also for 16. corresponding to the second ‘”
approximation. The only difference in the proof is the fact that in (4.24) X, iﬁ
W,
is to be replaced by X(n-1)5" bl
)
REMARK 4.5. R
5 5 6 o
The equality Y, = V Y/ implies that, for F e B(RY). »°(F)=E[F(x ) [Y,] ‘
= 6 = = \
converges to w(F):E{F(xt)|Yt] in all L™, m 21, [17]. The convergence is even W
a.s. if the sets of sample points {0.5,...,N6} form an increasing sequence as 9,
"(
6§ =0. I'|:
!
)
5. APPROXIMATIONS OF THE SIGNAL PROCESS »
o
k \-
After a study of the Euler approximation in L=, we give a quantization N
5
scheme preserving the degree of approximation. First of all we are going to Zﬁ
give an estimation of the constants Kl(k) and Kz(k) such that inqualities gz
1/2 oy
(5.1) I I € Ky and  |lxx |1 < Ky() [e-s] :
k Wt
hold when X € L™. For k=2, we put K1(2)=K1 and K2(2)-K2. iﬁ
In current literature ([4], [6]. [14]) these constants are determined for &
S
even k by using the Ito calculus. But one may need to consider the above ?ﬁ
inequalities for arbitrary k 2 2. We give here a rapid estimation of K1 and K2 L )
by using the Burkholder-Davis-Gundy inequality, [2]. )
Suppose Xy € Lk. k 2 2, and let N be a positive number and define ﬁ_
T=inf{t;|xt|2N). Since x is continuous, and |xo|<co a.s., 7#0 for sufficiently N
»
large N and 7-T a.s. as N 2o, We put t.7r = min(t,7). In order to simplify .
o
\l
the notations we write ||°|| instead of ||'||k. yl
L)
We have %
3 t t
= . b . o
(5.2) X, r =% * fol[o_T](s)f(s.xs)ds + fo 1[0.1](5)3(3 xs)d s <:
l l l _ 1 q l .|:
2k k, t 1 Kk, ., -k "'
. d + *
Hx, 1< Tixgll +a t [ifl‘rOE(l[O.T](s)lf (s.x,)|")ds] )
o
¥ﬁWW?W?H#ﬁVVhVFVVH??V???Uhyvm%vv?vv?\vvvvvvvvvvvwﬁ
R A S S A S e L R 2 b e



1 1 1
37k 3 ¢ i Ky, K
+4k(qt)? [ 3 SGE(ipo ry()]" (%) [9as)
where gi' represents the vector (gil.....gir).

For k=2, the coefficient 4k can be replaced by 1. By using (2.4) we can

write
11 -1 1
2,2 k. ot k, -k
Hix, 11 < Hxgl] + Kylar)® (t5+ak)e “TSGE(I+Ixg 1) dsT™.
Therefore
k 1
k k-1 k k-1 2 k -1t k-1 k
e 11 < 27 Ixg ¥ + 2470 k§tae)® (% a® g vl 1199
k L
< 270 I | € + 2272 K@D A(T® + a0+

kK 1
+ 222 K‘;(qT)z (1% + a¥r? Y P [Kgs.

Then the Gronwall lemma gives
[ ] )x

where

k
erll” $AemB

(5.3) d )
A=2Tx ¥+ B

k 1
2272 K¥(am)? (TPeai)

Since the right hand side of the last inequality does not depend on N, we can

| B

let N go to infinity and obtain
1

(5.4) l1x, |1, < A% exp(B/K) =t K, (k)
Kz(k) can be obtained in terms of Kl(k)' starting from
L_
2
lx,x, 11 < q

] -

1
1-+ q =
(t-s) X[ EIJ';E(Ifi(u.xu) %)duk +
i=

o

1 1
Lo . 1
+ 4kq(t-5)1* K (3, EClg! " (u.x) [%)au)¥,

NOj —

with t>s, and by using the second ‘'nequality (2.4) for fi and gi. and (5.4).
For various approximations of x we refer to [15], [18] and [21]. We just

derive here a few inequalities concerning the Euler approximation x, defined by
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(3.13) and (3.14). We first determine a bound for ||xt||k. under the
hypothesis that Xy € Lk. k 2 2.
Let us define ; and g as follows
(5.5) f(t.xt) = f(nb.xnb). g(t.xt) = g(nd, xné)' for né ¢ t < (n+1)d.
Then we can write
(5.6) X5 =% * In f(s x )(s x )ds + Ig g(s.xs)dbs
and use the method that allowed the passage from (5.1) to (5.4) to find that

,,;nbllk also is bounded by K, (k) given in (5.4).

The same method can be applied for an estimation of lenﬁ-xnﬁ'lx' We have

for t = né
1 1 1

x| € Ko(amZ (2 + 4T K (2 3 f‘“”“

E[(s-18) (1+|x |+]x;5]) +
1
~ ok, .k
+xg = x5l + x5 - x,5[17ds)

and
Lot
lx x| 1¥ < [Ky(a1)? (12 + a)]% 771 2570 (1ra(102k (1)) + Ky(k)VBI¥
n-1
.5 1: lxg x5! 151
By putting u, = ||x16—;16|| for 16 { s < (1+1)8, the sum in the above

inequality, multiplied by 6 can be written as Iausds. Therefore. the Gronwall

lemma can be applied and gives the following inequality.

||xn6 - ;n6||k < (; exp ﬁ) Jg. where
L
(5.7) A= (KB)K [(192€, (K)) ¥B + Ry(k)]
. 1 -1 11
B= f2 KyaD? (1% + 401¥

Finally, for arbitrary t € ]nd, (n+1)5[. we can write

(5.8) ||xt - xt"k C[AexpB+ Kz(k)] Vb
We define
(5.9) K(k) := A exp B.
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19 g
Next., we proceed to the quantization of x. | E:-‘
Bt
We fix k once and for all and suppose that X9 has a continuous : "':“
distribution function with finite k° th absolute moment. %
LR
In order to simplify the notation we write Equation (3.13) as follaws: :::::z
)
l.(
- ~ - 1
(5.10) X, =X _; + f(n-1.X ) +g(n-1, X ) v6b . n=0,1,....N _ool
where (brix' n=0,1,...,N, i=1,...,q} is a set of independent normalized Gaussian ".“.
U
~ ~ ~ ~
random variables and Xn. f(n-l.Xn_l). g(n-l.xn_l) stand for X 5 f((n-1)8, E |
x(n-l)b)' g((n-1)6, x(n-—l)b)' respectively. ,,
We choose a finite increasing sequence UgeUy. .ol in R and real !’,;.'
I-1 e
1
coefficients aj.a;.....a;_; in such a way that if B= 2 ail] and if x :o::::
i=0 1"9541] Y
is a rzal random variable with distribution N(0,1), we have ||x-B(x)]| Ik < 7. B
- 1 0
¥e put b = B(b_ ) and a = sup Iakl We approximate x., by a finite space valued n
n n K 0 N
W,
'l
L} B
random variable x in order to have leo OI Ik ¢ v and denote ag = :up IXo(w)| '
W A
We approximate (Xn) by a finite space valued Markov chain ()?n) defined by :'.:)
Y
oY
- - = = - = = e
= - - Y
(5.11) X =X _;+f(n-1, X _)6+g(n-1. X ,) /) b . :
_ »
The components of X take a finite number of values in an interval [~a.a]. The N
PN A :'\.:\
number a will be determined in the sequel. Functions fi(n.') and g”(nn) are -::-_\
R
n —1j ¢
approximated by step functions f (n.*) and g “(n,*) on [-a,a]. such that ®
R
)
-~ ~ —1 ‘ \J
sup |£1(n.x) - fi(n.x)| <n and sup Ig”(n.x) -gdm.x) < . .
i.n,x i.J.n.x QA
- 1 o 3
(the components of x are restricted to [-a, a]). The values of 6, V6. Xg¢ bn' ha'ory
e
i ¥ .0
. g Y are chosen in a finite periodic subset of [-a.a]. "
N
By taking the difference of the two equations (5.10) and (5.11) we can :\ !
f\ !
write i
- - ~ - - 'J\.r
1% K 1S 1% K 1 HEemrx ) - Foen X lls + R
()
+ o1, X)) - Fo-1, X )18 + (ls(e-1. X ) (b -b ) | IV o
9
XA
,‘_\"‘ LA AN NN .r -"'J' N A N I _'J- I :-":

W By S ACd -, W W N, e W, X, m ‘
'.“‘":‘.t“..t"'.‘ .. '.::"'.:."’0":0 ot ..J!':. " o‘n J.‘.l AN 40N "1.;-'* N h ’\"‘-( By "ﬁ"\" LR .""f
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)
+ |l[s(n-1.X ;) - g(n-1.X__)1b_|]| V6 +
~ - —_ - p— — '\
+ llen-1. X__,) - g(n-1.X__)1b_| V5 < -
oy
-
] - - - Y
< Hxn_l -Xn_lll +K0||X - -Xn_1||6+\/qn6+ "
Ay
— — - - — N
, + Vgr KO(1+K1(k))-v\/6 + "‘"Kol |xn_l - Xn_lll(ﬂ(k)+‘1)\/5 + WD
+ vqrn (M(k) + v) V&
where M(k) is the Lk—norm of a random variable with distribution N(O,1) and we A
— o
denoted ||| lk simply by |]|+]|| and used the inequality ”bn| |k < Ilbnl |k + )
o, 11, - N
n n''k :
We can write -,
;\
Hx, - x Il <ullx _, -x _ Il +v )
where I,
(5.12) us=1+ K&+ varK (M(k) + 7)V5 :\-r
v=vqVve[nh+ rKo(l + Kl(k))vﬂ-(ll(k) + 7)n] :
Successive iterations of this inequality give ‘;_5
- -1 n :3,
- ———— ~
(5.13) ||xn xnllkgv —— U )
We want ”xn_-inl 'k to be of the order of w/-b-. Therefore, we can choose
-
o™
-N - -N - Y
(5.14) n=v uN\/ﬁ.'v:qus/b 7
1 2 o
where N = [T/6] and A and vy are constants that can be chosen independently of ."
rv
5. N
_ oS
Denoting by K(k)v6 the right hand side of (5.13) when n and v are replaced :\.
Pl
by (5.14) we write ,
2%
— - J— '-\
(5.15) Hx, - X, € K(k)Ve s
The approximation of f(n.*) and g(n.*) by step functions on [-a.a] depends, of ':-
course, on the magnitude of a. Therefore we need to determine a lower bound 3
for it. Equation (5.11), can be written for the 1th component as follows: i,
"
Q¢
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r
ol _ i i, v =13, v iy
X=Xl o+ (n-1, X _ )6+ Jilg (n-1.X__) V6 b
=X LX) - 1K )16 + £ (n-LX )6 +
r - PN - —— r . — —_—
+ zl[g“(nq.xn_l) - g-1.X Ve bl + Zlgi‘j(n-l.xn_l)w/é bl
J= Jj=

From this we deduce,
- - — _ - —
X 1 <X _ 1+ 16+ Ky(1+|X _ 1) + ramvs + rKa(1+[X _, ) V6

Let us put a = sup |i:l(w)|. Then we can write
.0

a Sa . +mb+Ky(l+ vq a ;)b + ranvé + rKOa(lﬂ/; an_l)\/g
a < an_l(li-Ko\/;\/g(ra + \/E)) + v/g(n + KO)(ra + \/E)

By iterating successively we get the following inequality for @’

n+ — - - n+K
(5.16) a < [———Ko—- + ao] [1+ Kos/q vé(ra + w/b)]N - 0_ . a

where N = [T/6].
We see that once 6 is given, n and v can be chosen according to (5.14).

The choice of 7 imposes that of a, and finally a can be chosen to be equal to

the right hand side of (5.16).

Suppose that we approximate Xn5 = Xn by X5 = Xn as above and we define X,

by

(5.17) X, =X 5 for né { t < (n+l1)d.

We obviously have ||xt - ;tl |k < K(k)V5, (cf. (5.15)). By replacing x by x in
the third approximation we get new unnormalized and normalized filters that we
denote by ;6 and ;6. This approximation procedure is the fourth we are

considering here.

The quantization scheme presented above depends largely on k. As in the

next section, we only consider L2-approx1mtions of x, it is then more

convenient to construct x and the corresponding filters for k = 2.
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6. EFFECT OF THE APPROXIMATIONS OF THE SIGNAL PROCESS AND OF THE QUANTIZATION
OF THE OBSERVATION PROCESS

Since we only need L2—norms for the evaluation of a bound of IIZt-QtIIO 1
all the constants Kl(k)' K2(k). K(k). Ekk) etc. of the preceding section will

simply be written without the argument k as Kl.Kz.ﬁ.ﬁ.etc. Similarly, ||°|[2
will be denoted by ||+||. The same symbol is also used for ||F|| as the
sup-norm of F. We shall avoid any possible ambiguity by clarifying the meaning
when we shall deal with the sup-norm.

We go back to Formula (4.10) where the superscript ° represents the

modified objects of the first approximation, obtained after x is replaced by x

or x, constructed in Section 5, with k=2.
We need to evaluate a bound for (4.20) and we first deal with

e, - 8t 1. We nave, for (n-1)5 <'s < né ¢ ¢,

(6.1) |'CS - 8t.s” = “h(s'xs) = %I?g_l)bh(u"o‘(n_l)b)du” <
1
< LHTo_1)5 Elb(s.x) - h(u.X )50 1% dul® <

<Ko (801 + Tlxg 11+ Ty ys1) + Txg = xp sl +

* "x(n-l)a‘x(n-1)a|| * ellx(n—l)é_x(n—l)él'}

where € = 0 if § =xand e = 1 if ; = X.

»

As llxnbll < llxnéll + ||xms - 6||' according to (5.15), we can write

n
(6.2) l1x 511 € K, + KV5

Therefore (6.1) becomes

lic, - 8t's|| S Ky (6(1+42K, + ekvB) + (K, + K + eK)V6)

where K is given by (5.9).

Consequently,
(6.3) Ic - 81, < (A + KT [eK (1+5) + K]} V6
where Al is given by (4.25).

Similarly, we have
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6.4) ey (- & 11 = 11§ )sthunx,) = h(wkey_y ) laull €

[4 KO s:p leu - §(n-1)5|l < KO(K2 + K+ eﬁ)¢§

where {(n-1)5 < u { néd { t. Therefore

¢%5"ﬁ§eiﬁa&4-,

-
(6.5) 1t -8 1. < VIK (K, + K + eK)V5 2%
: t e 0{t2 € S?
We also have :
(6.6) Ich, « B8, < VIIK (14K,) + K (14K, + ekvB)] = ,.
= 2Vl Ko(1+K,) + evl Ko Kv5 .' ‘]
and :‘ 4
o
— — — ﬁ by
(6.7) 1B, < VK (14K, + K v5) 2
By bringing (6.3 -~-~7) and (4.25) into (4.20) we get oy
-4 s
S
(6.8) liz, - 2,11, & 3
..

™

S A+ (A + 'Ky VT [eK(1+8) + K1} {1 + 3VB(A, + e'KVI[eK(1+46) + K]} +

2.7

+ VT Ky (14K)) + %e\/F K KVB)

.' 'I

LS

3
A
»

+ e'JF.K

oKy + K + eK)Vo [1+VIK (14K, +eKvB)]

B

2

=: Af (e.e')

N

Y P

where ¢' = 1.

T T 2}
<

For the evaluation of a bound of (4.10) we need to compute a bound for

",
..

| &
rd

. e

IlF(xt) ~ F(%t)lll. We then suppose that F is uniformly Lipschitz continuous

.
A

i.e.,

DL

(6.9) [F(x) - F(x')| < K[x-x"{. vx.x' e RS

AR A f,;

ey

with a constant K.

We therefore have w

(6.10)  |IF(x)-F(x,) ], < Kllx, %,y < e'x(K2+f<+ei<')~/3 =: Ag(e'.ewE :az

where ¢' = 1.

Finally we have the following extension of Theorem 4.3.
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THEOREM 6.1

Under hypotheses (2.4), (4.21), (6.9) and X, € L2. we have

(6.11) lw(F) - #(E) 1], < [211F|1A3(e &) + AS(e ) VB
where ||F|| is the sup-norm of F, A? and Ag are given by (6.8) and (6.10),
respectively.

For e'=0, the right hand side of the inequality gives a bound of
||W(F)—w6(F)||1. {but in this case the Lipschitz continuity of F is not

needed), for e€'=1 and e=0 it gives a bound for I[W(F)—wélll and for e'=1 and

e=1 a bound for ||w(F)—;5||1. a

We recall that the quantization of x was made under the supplementary
hypothesis that the distribution function of Xg is continuous.

If the values taken by (ynb) were exactly known, then the approximate

filter ;5 could be computed with a desired accuracy by a finite number of
operations. But the observation is usually measured in terms of units of a
finite set; more precisely, neasurement devices offer only quantized values of
the observation. The problem : s to characterize a quantization of (yg) and

therefore of (yné) which would naot affect the degree of approximation of w.

Let us put
- [t'6] _ -

_ .- 6 6 b6 176,2

(6.12) Z, = exp A H y -3 lHnl )
0
where Hn is given by
=50 1 nbd =

(6.13) Hn =53 (n-1)5 h(s.x(n_l)b)ds

and x is the quantized approximation of x for k=2.

E is the likelihood ratio corresponiing to the fourth approximation
procedure. We shall replace yg by a finite space valued random variable

approximating it. More precisely, we choose the real step function
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with finite J and define y° = (y0!.....y°P) by
n n n o
_5.1 - 6.1 . "ll
(6.15) v, =Cly,') o
in such a way that if yg is replaced by yz in (6.12) the corresponding filter .,
?6 should be close to . w
i
We put Q:
| 6 b % ktg
(6.16) ||yn - yn||0"1 =¢6° and c = slep cy :
= (/8] 5= &5, =5,2 o
s "y
(6.17) Z,=exp I (H y -5 |HI) b
n=0 \' :
and define 5, and 7o by o
=0 _Q c o =0 _=b =0 e
(6.18) at(F) =E [ZtF(xt)] and "t(F) = at(F)/Et(l). ié
for all F e B(RY). b
LS Y,
= — - 31y
We remark that Zt is not the likeiihood ratio corresponding to y . but T »
SN
is still a probability distribution on the finite space of values of ;: ;E‘
o
In order to simplify the problem we first suppose that h is bounded. g;‘
Formulas (4.7) and (4.8) are still valid with & and ¥ replaced by 5° and ke
~. J
= ol
ia. and we can write Sﬁ‘
=
= = 2y
=0 - - - In Y
(6.19)  [[=(F) - T (F)I]; < 2[IFIl 1IZ,-Z 11 4 + Z [F(x) - F(x )1y ;- o
Putting o
e
= _ - = R
llz, - Zt”O.l S ”Zt'ZtHO.l iz -zdlo :._:-:Z
= = -— - '?‘n‘:
Z =2 -2 +12 @
t t t t TN
and bringing into (6.19) we can write ;i\
ROAY
SOAY
=6 = - -
+ 2|IF|] |1z, - 2,01y, *+ 1122 [F(x) - F(x)1llg 4 T
_:-;‘ ¢

o

Notice that the first two terms of the right hand side dominate
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Ilwt(F)-;‘:(F) | |1 and its bound is given in Theorem 6.1. Therefore, we only
need to compute a reasonable bound for the sum of the third and fourth terms.

According to (6.10), this sum is bounded by
(6.21) 11Z,2, |1y 5@IIFI] + Kl lI)
<z, -z, 1y o [2HFIT + K(Ky#K+K)VE]

Therefore we need to make HZt-ch |0'2 small.

By putting ||h|| = sup [h(t.x)| we can write
t.x
_ = [t/8] — - - =
é (]
2,201 5 ¢ 115 B08 - Pollg 4 122,14

n=0

CTHEeB (1Z g 4 * 11Z 1o o)

We have
= 2
| 1Z, 1o 4 < @G |Inl]%) =: K, and
‘ =4 [t/8] — _5 -
2t - eple 3 (30 - 3 03] ¢ exp AcTlbLL
n=0
Therefore
> 5 - T| |h
(6.22) 11Z, 2,115 5 < TlInl lv6 [K; + exp <THELLg

The quantization can be carried out in such a way that

(6.23) ¢ = D[K; + exp —"%M-l—]'l

where D is a constant. We then obtain a bound for ||w(F) - ?5(17)“1.

proportional to V5.

Therefore we can state the following

' THEOREM 6.2

Under the hypotheses of Theorem 6.1 and for bounded h, variables yg;

n=1,2,..., [T/6]. can be approximated by finite space valued ;:. as defined by

(6.15), in such a way that (6.23) is satisfied. In this case if yg is replaced

by ;: in the expression of ;6 yielding a new filter 1=r6. then

% -.“'s I *-."'\‘\}:\- s hahg }s‘\' P PO e
..." }\' > " v ¥ AR "v-._ '- LA \._' S IS
WY PO Y S ‘o ‘,' , ______ ) AN N -s\»_p. .-. -. ‘\. i {)‘ v

0

-

WL A A

SN

S
s

3

o

SR Do e

-

A -

A WS

NI

R

I il AR A

.l.l
v 1

.. -
P )

AL
'l:l'l 5

*

S

v

’ )
Py /'/v.-"'-' "

% 5 5

a8 R
’5""‘

-
-



(6.24) | (F)-F2(F) 1, < 2[IFT1EA2(1.1) + AS(1.1) V5 +

+ 1| |nliC2IFI] + K(x2+§ + K)Vo1V6

where the first term of the right hand side is the bound of ||w(F) - 1_r6(F)||1
given by (6.11) for e'=e=1 and D is a conveniently chosen constant for the
fulfillment of (6.23). o

The procedure leading to %6 is the fifth and the last of the approximation

procedures considered here.

REMARK 6.3
In the case where h is bounded, the second inequality of (4.21) is not
necessary and corresponding modifications of Af and Ag can be easily made. But

it is always possible to get rid of the boundedness condition of h in the last

theorem. In fact ;5 can be approximated by a truncation of h in such a way

tr

that if ;. is the filter of the fourth approximation corresponding to the

truncated h say htr. then ||;kF) -7 tr(F)II1 is bounded by a quantity

proportional to VE: In this case the fifth approximate filter can be

constructed with h'T and give again for ||w(F) - 1=r6(F)Hl a bound proportional

to V5.
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